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A free surface may be deformed by fluid motions; such deformation may lead to
surface roughness, breakup, or disintegration. This paper describes the wide range
of free-surface deformations that occur when there is turbulence at the surface,
and focuses on turbulence in the denser, liquid, medium. This turbulence may be
generated at the surface as in breaking water waves, or may reach the surface
from other sources such as bed boundary layers or submerged jets. The discussion
is structured by consideration of the stabilizing influences of gravity and surface
tension against the disrupting effect of the turbulent kinetic energy. This leads to
a two-parameter description of the surface behaviour which gives a framework for
further experimental and theoretical studies. Much of the discussion is necessarily
heuristic, and is often limited by a lack of appropriate experimental observations. It
is intended that such experiments be stimulated, to test the value or otherwise of our
two-parameter description.

1. General introduction
This study is motivated by a wish to model the spilling breakers that arise at

the crests of steep water waves; for example as an ocean wave approaches a beach.
The water falling down the front of the wave can be in extremely violent motion
with much splashing, see figure 1. Further, the generation and maintenance of this
turbulent flow involves strong interactions with gravity. The flow down the front of
the wave, from the crest of the wave, drives the forward advance of the breaker.
Details of this flow are not understood and such understanding forms one of our
major aims. At the start of this study it became clear that, to make an effective
model, better general understanding of strongly turbulent flows at a free surface is
needed. By ‘strong’ turbulence we mean turbulence which is sufficiently energetic that
it causes the free surface to be strongly distorted. Such distortion may range across the
generation of surface waves, projections, cusps and dimples to surface breakup with
creation of drops, bubbles and fully mixed two-phase flows. Attention is restricted
to liquid–gas interfaces, and to turbulent flow in the liquid, generally neglecting the
dynamic effects of the gas.

Our aim is that eventually we might usefully model unsteady breakers. We draw
attention to two aspects of such flows where we lack any detailed models. The
source of turbulence in a breaker is at or close to the free surface, yet we are not
able to fully identify the turbulent production mechanisms. Deep water breaking is
usually relatively brief with the region of active turbulence generation often being
left behind as the wave crests advance. The evolution, and decay of generation of
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Figure 1. Photograph of a spilling breaker propagating toward the left. This is an example where
much of the visible ‘white water’ may be an interpenetrating mixture of both air and water.

such turbulence when it is not on the front of a wave crest needs greater insight for
successful modelling. We only make slight progress towards a full solution of these
problems and much of our discussion relates to steady mean flows. An example of
such a steady flow is given in figure 2, which shows a small hydraulic jump in a
laboratory flume. The flow approaching from the right-hand side is about 4 cm deep
and due to the substantial convergence of the flow as it passes over the weir it has
a low level of turbulent velocity perturbations, probably less than 10% of the mean
flow velocity. The incoming water surface appears smooth and may be contrasted
with the convoluted surface of the breaker forming the hydraulic jump. In addition
note that only a few air bubbles are being entrained. Further properties of the breaker
are illustrated by red dye that was added from a tube that is visible as an oblique
bright line at the top of the photograph. The dye was added as occasional drops
about once every two seconds. The original aim was to see the extent of flow down
the surface of the breaker. However, as each drop entered the water the result was
dramatic. In a small fraction of a second the dye spread to most of the turbulent
region in which it is visible as a darker shade in the photograph. In essence this shows
that the turbulent velocity fluctuations are of the same magnitude as the incoming
mean velocity. Further discussion of this flow may be found in Peregrine & Svendsen
(1978), and further photographs for a slightly weaker breaker with no air entrainment
are shown in figure 5. General points to note here are

(i) the high level of turbulence originates from the free surface – its generation
mechanism is not entirely clear and is a major target of our studies;

(ii) in this paper we concentrate our discussion on the region close to the free
surface where the presence of each phase, air and water, is intermittent. This precludes
the use of some useful concepts such as Fourier representations;
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Figure 2. Photograph of a hydraulic jump on a flow entering from the right. The volume of
turbulence originating at the free surface is marked by dye.

(iii) as figures 1 and 2 illustrate, the free surface can respond to turbulence in
differing ways.

There are numerous studies of turbulent flow at a free surface. Those which seek
to model the turbulence fall into three categories:

(a) approximations to large portions of the turbulent flow. Of these the disconti-
nuity model for a bore or hydraulic jump is well known, and the ‘roller’ model of
Schäffer, Madsen & Deigaard (1995) is becoming popular;

(b) averages over the turbulent fluctuations;
(c) direct simulation of details of the turbulent flow.

We are mainly concerned with the second of these categories where Reynolds-averaged
equations require closures to be chosen for averages over products of the primary
variables. In particular, we address the problem of averaging over a non-smooth,
or disconnected free surface in Part 2 (Brocchini & Peregrine 2001). However, this
study also provides useful guidance for the simpler type of modelling. An important
preliminary is the identification of the various flow regimes that can occur, and is the
focus of this paper.

The most interesting flows are those, as in figure 1, which are strongly nonlinear
and splashing, but even the much smoother flows occurring in small ‘micro-scale’
breakers that are restrained by surface tension, as in figure 5, also require attention.
Experimental work on disturbed air–water interfaces is mainly concerned with two
fundamental aspects. On the one hand the mechanism of generation and the dynamics
of small-scale features of the free surface are studied. These may be both the ripples
at the front of gentle spilling breakers (e.g. Duncan & Dimas 1996; Duncan et al.
1999) and the water columns, ejections, drops and bubbles induced by turbulent water
structures impinging on the free surface (e.g. Davies & Driscoll 1974; Clift, Grace
& Weber 1978; Volkart 1980; Rein 1998). A few experiments are also aimed at a
quantitive prediction in terms of synthetic parameters of the onset of steep, capillary
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ripples which characterize micro-breakers of different types (e.g. Lin & Rockwell
1995; Walker, Chen & Willmarth 1995). The second important object of experimental
analysis is the role played by water surface features like those typical of micro-
breakers in air–water gas and mass exchange. Recent works analyse the possible
regimes that govern aeration rates like turbulent transport and bubble-dominated
transport (Boettcher, Fineberg & Lathrop 2000) and parametrize the intensity of
air–water gas transfer in terms of global parameters like the fractional area coverage
of micro-scale breaking waves (e.g. Zappa, Asher & Jessup 2001).

There is no good description of free-surface boundary conditions for a strongly
turbulent flow. Almost all modelling to date has taken linearized boundary conditions
(e.g. Walker 1997) and/or inappropriate turbulent averages of the surface, or else has
made approximations for large portions of the turbulent flow field at once. Aspects
that are omitted in any linearization are the mass and momentum flows associated
with the fluctuations of the free surface. For the more organized motion that occurs
in water waves this mass flow is relatively well known and described as Stokes drift.
In an Eulerian description this is normally thought of as the mass flow associated
with the fluctuations of the free surface. Hasselmann (1971) is the only paper we are
aware of that describes both the Stokes drift and its equivalent for turbulent flows for
the case of a smooth surface. Little notice seems to have been taken of that paper and
in Part 2 we make equivalent, but more general, derivations of these results due to
surface fluctuations. Once a free surface is convoluted or disconnected, then the flow
close to the surface can reasonably be described as a two-phase flow, and Chen et al.
(1996) describe the evolving free surface from a Rayleigh–Taylor instability in this
way, but take a mixed region rather than treating it as a boundary. The work of Hong
& Walker (2000), who use the level-set method of dealing with the two-phase nature
of the flow, is an interesting exception to the above comments: it shows how induced
flow at a free surface can have a major effect on the flow of a turbulent jet. Also
Hodges & Street (1999) derives a large-eddy-simulation technique for finite-amplitude
free surface displacements.

There are wide differences in the free surface behaviour at different length scales
since surface tension is important for small length scales and gravity for large
length scales (e.g. Davies 1972). The results required from turbulent free-surface
flow hydrodynamics also differ widely. Application to forces on structures may only
depend on the largest scales whereas heat or mass transfer between gas and liquid
may depend strongly on the smaller scales even in a large-scale flow. The wide variety
of free-surface flows and their different scales of motion are likely to need different
closures for averaging over the turbulence. First we note some general aspects of the
problem.

Although this study is motivated by the spilling breakers that occur as water waves
advance towards a beach, there is a wide range of other flows where turbulence
strongly deforms a free surface. Wind-generated breakers are likely to be very similar
to those generated on beaches. Yet, although there are differences, especially due to the
shear in the water, there appears to have been no detailed study of them. Theoretical
work on waves with shear, e.g. Teles da Silva & Peregrine (1988) that shows a strong
effect of vorticity on the height of the limiting waves, has yet to be effectively linked
with wind wave breaking, though Banner & Tian (1998) have used Dold & Peregrine’s
(1986) boundary-integral method to compute how two-dimensional waves on a shear
approach breaking. Douglas & Weggel (1988) describe some qualitative laboratory
experiments of the effect of wind on waves breaking on a beach, confirming that
there is a strong effect.
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On the other hand the gas–liquid interactions in more confined circumstances such
as co-current stratified two-phase flow in a pipe shows very different behaviour. Here
the surface can be almost perfectly smooth between turbulent slugs which involve
a highly turbulent gas–liquid mixture (e.g. Maron et al. 1991). We suspect that the
importance of the gas phase in the flow dynamics increases as the gas becomes more
confined and where the gas also plays a part in driving the liquid (see Thorpe 1995
for a good review on the dynamical processes of transfer at the sea surface). However,
to keep the discussion and analysis relatively simple we include little consideration
of the gas phase here, although much of our work might be extended to include its
influence, and we do use ideas from the study of two-phase flow.

It is useful to note the differing character of the numerous instances of strong
turbulence at a free surface. Wave breaking is an example where the turbulence is
generated at the free surface, but equally common are examples where turbulence
reaches a free surface from below, or turbulent flow emerges from an enclosed or
partly enclosed region. Examples of the former are flows down steep rivers or artificial
spillways where turbulence generated at the bed can be strong enough when it reaches
the surface to cause spray and result in ‘self-aerating’ flows. The flows down dam
spillways have received detailed experimental study, for example see Bremen & Hager
(1989), and Chanson (1993, 1995, 1996). Similarly there is descriptive documentation
of the surface features of turbulence in rivers, e.g. Nezu & Nagakawa (1993).

Among reviews of turbulence at a free surface, and closely related topics such as
vortical flows near a free surface, are those of Sarpkaya (1996), Tsai & Yue (1996)
and Melville (1996), all in the same volume of Annual Reviews of Fluid Dynamics, yet
with reference lists that are almost entirely independent of each other!

More basic studies by Komori, Murakami & Ueda (1989) and Rashidi, Hetsroni
& Bannerjee (1992) are on the relationship between existing turbulent structures in
the flow beneath the free surface and the dynamics of the surface itself. In addition
there is a body of literature on heat and mass transfer at the air–sea interface, see for
example Wilhelms & Gulliver (1991). These studies have generated the concept of a
‘surface skin’, which when broken by large eddies or by breaking water waves leads
to surface ‘renewal’ and enhancement of air-water transfers.

Examples of numerical studies of turbulence at a free surface are the direct
numerical simulations by Handler et al. (1993), Borue, Orszag & Staroselsky (1995),
Pan & Banerjee (1995) and Tsai (1998). It is found that the effect of a linearized
free surface on turbulence has some similarities to that of a rigid boundary but there
are differences. These directly affect the velocity field, e.g. vortex lines can attach to
a fluid–fluid interface, whereas they cannot attach at a no-slip boundary on a rigid
surface which is at rest or in uniform motion; hence Walker’s (1997) discussion of
the ‘surface current’.

Shen et al. (1999) also simulate turbulence with linearized boundary conditions,
and discuss the relatively slight differences from no-slip boundaries. More relevant
is their discussion of two ‘surface layers’, first identified by Hunt & Graham (1978)
for a co-moving rigid boundary. One is the free-surface viscous boundary layer; as
one can expect from consideration of other boundary layers at the free surface, its
thickness scales with the square root of the local Reynolds number. The other is a
thicker ‘blockage’ layer due to the normal relative velocity components being strongly
constrained at the free surface. It scales with the typical turbulent length scale, and
through this layer the turbulent fluctuations become predominantly parallel to the
free surface. We mention these layers since we also discuss a surface layer which
differs from both of these. It is with regret that we also note that discussion of the
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viscous boundary layer has often simply used the term ‘surface layer’. Here we consider
turbulence sufficiently strong that the viscous boundary layer is generally of negligible
thickness compared with the surface distortions. Also, the blockage layer can be much
reduced, or entirely negligible when the constraints of gravity and surface tension are
insufficient to restrict vertical velocity fluctuations near the mean free surface.

In this paper, we describe the varied character of a free surface distorted by
turbulence. This depends on the strength of the turbulence and its length scale.
The main portion of this paper is a phenomenological introduction to the various
types of flow regimes that can be found. There is a need to introduce terminology
to describe these differing classes of surface disturbance. Some of the regimes are
scarcely recognized in the literature and deserve more study; hence § 2 gives a brief
overview of the subject. Such study needs to be quantified and as such clearly needs
a description of the disturbing turbulence as well as the restraining influences of
gravity and surface tension. These influences can usefully be described in terms of
dimensionless Froude and Weber numbers; however, since the majority of applications
relate to a water–air interface in normal terrestrial gravity, much of our discussion
relating to these two parameters is in dimensional terms. The following discussion is
then based on particular regions of the parameter space. It aims to go a little beyond
the results obtainable by simple consideration of dimensionless numbers in assessing
the boundary between different regimes. However, it is mainly descriptive, often
based on much personal observation. In some circumstances other features such as
surface-active agents and air motions are also important but we generally ignore such
complications. It becomes clear that even when suitable averaged boundary conditions
are found the particular closures needed are likely to vary with the flow regime.

Part 2 (Brocchini & Peregrine 2001) is a more formal and mathematical account
of the flow conditions at a strongly distorted, and possibly disconnected, free surface.
Boundary conditions appropriate for use with averaged equations in the body of
the water are obtained by integrating across the two-phase surface layer. Preliminary
discussions on closure are given for two simplified cases in order to stimulate further
experimental and theoretical studies. The paper concludes by considering the spilling
breaker and the initiation of turbulence at its forward limit. This is the forward limit
of the masses of water tumbling down the front of a spilling breaker where they fall
onto the smooth incoming water at the foot of the breaker causing intense generation
of turbulence.

Part 3 (Brocchini & Peregrine 2002) continues with the original problem of a spilling
breaker. It is mainly concerned with an extension of the model of Madsen & Svendsen
(1982) and Svendsen & Madsen (1984) who followed Peregrine & Svendsen’s (1978)
observation that the layer of turbulence generated by a spilling breaker is relatively
thin and developed a thin-layer model to add to the shallow-water wave equations.

Further studies should include a range of closure hypotheses for differing flow
regimes, more experimental attention to the concepts developed, and wider applica-
tions.

2. General description of disturbed free surfaces
From the wide range of examples of surfaces disturbed by turbulence it is useful

to concentrate on two types of flow. One is that of a spilling breaker, and its
stationary counterpart the hydraulic jump, and secondly the surfaces disturbed by
pre-existing turbulence as from a jet or wake. In both cases the overall flow is steady
or quasi-steady with an evolution in turbulence properties from its inception, or
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its encounter with a smooth free surface, to its eventual decay in a downstream
direction. This evolution is common but not universal. For example, in spillway
flows there is a continual input of turbulent energy from the bed and gravity. At
inflow the flow’s surface suffers little disturbance but turbulence developing from the
bed downstream leads to vigorous interactions with the surface. In all cases, many
examples of strong interaction between turbulence and a free surface show a whole
range of conditions between a quiescent surface, where simple linearized boundary
conditions are adequate, to strongly splashing flows which clearly need a different
approach.

We commence with the least energetic turbulence, and move to stronger more
energetic flows. A weakly deformed free surface can demonstrate three different
features:

(a) deformation that is simply a ‘passive’ response to the turbulent fluctuations of
pressure;

(b) water waves;
(c) flows which essentially involve non-uniform vorticity and the free surface.

The first type of response is illustrated well by the surface depression that occurs above
the cores of vertically oriented vortices. The case of a Rankine vortex is often used
as an elementary example, Lamb (1932, § 27). These fluctuations in the free surface
can be seen even when the surface is very nearly flat by judicious viewing of objects
reflected in the free surface – a relatively neglected method of quantitative observation.
As turbulence gets stronger they simply become more evident. In particular, the thin
cores of near vertical vortices may give dramatic lowering of the free-surface and
lead to some air entrainment. See figure 3 where such vortex ‘dimples’ and other
passive and active free-surface features may be seen. This type of passive free-surface
behaviour seems unlikely to have important dynamical consequences other than
those inferred from linearized boundary conditions even for moderate slopes, but see
below.

Water waves are the typical motion of a free surface. They are usually very well
described by irrotational flow and hence might not be considered as part of a turbulent
flow. However, note that at the margin of any turbulent flow irrotational fluctuating
velocities are induced: at and near a free surface their character may be changed due
to the influence of the surface, with wave generation occurring. Also water waves are
a potent source of turbulence when they break. Thus water waves and turbulence are
intimately related.

Water wave generation by weak turbulence requires a reasonable match of length
and time scales between the turbulent motion and free waves, as in Phillips’ (1957)
resonant interaction theory for water wave generation by wind. This has been extended
in Teixeira & Belcher (2000) to generation of waves by subsurface turbulence. Even
for this simpler case where linearized boundary conditions can be expected to be
valid, those authors comment on the difficulties of finding models for the time and
space variation of the pressure. As is well known, free water waves have a minimum
phase velocity due to the balance between gravity and surface tension; on water this
is about 0.23 m s−1 for a wavelength of 17 mm. This indicates a lower bound on the
translation velocities of turbulent eddies at which such eddies generate waves. For
larger velocities, as was seen at the time the photograph in figure 3 was taken, the
erupting nature of the boundary of the turbulent region behaves like a wavemaker
around each moving eddy. The resulting waves spread out, as from any other brief
localized disturbance. In particular the group of moderately steep waves close to the
centre of figure 3 are freshly generated by such an eddying motion.
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Figure 3. Flow of the River Wye over submerged rocks. Flow is down the picture, which shows an
area of roughly 6 m×3 m. Each rock is probably about 30 cm in size. The stronger turbulence in the
wake of each rock disturbs the surface, showing many of the surface features of weak turbulence.
Waves generated by the largest, billowing, turbulent eddies roughly outline the wake. Within the
wake dimples and other irregular features give an indication of smaller scale turbulent features.
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The converse reaction, of waves incident on moderate strength turbulence, typically
leads to dissipation of wave energy, as may be seen from the relatively calm conditions
on a ship’s wake in an otherwise rough sea. Peregrine (1976) reviews the topic, and
more can be found in Boyev (1971) and Ölmez & Milgram (1992). The main overall
result is that incident surface waves are damped, strongly so if their wavelength is
similar to, or less than, the dominant length scale of the turbulence. For dissipation
on a turbulent current see Simons, Grass & Kyriacou (1988) and references therein.

Free-surface features that involve non-uniform vorticity fall into two somewhat
overlapping categories. Some are just stronger versions of the ‘passive’ displacements
of the free surface. Others are related to ‘separation’ of streamlines from the free
surface. Separation at a free surface differs somewhat from the corresponding sepa-
ration at a rigid surface. As an example of this we note the steady flow around a
bubble. It may not separate at high Reynolds numbers but can separate at ‘inter-
mediate’ Reynolds numbers. Blanco & Magnaudet (1995) give details of this type of
behaviour by considering ellipsoidal bubbles of differing aspect ratios. However, there
are many other facets to this problem, not least the series of flows that can be found
commencing at its weakest with the Reynolds ridge (Reynolds 1881; McCutchen
1970). This is associated with a thin layer of separation close to the surface, and as
the strength of the flow is increased the Reynolds ridge enters the capillary/gravity
regime, with wave generation, and breaking can occur. If the flow’s strength and
length scale become larger still the separation line becomes a strong depression,
sometimes called a ‘scar’. Note that the Reynolds ridge usually occurs when there is
some surface-active material being swept along the surface. There is another range
of surface behaviour depending on the amount of surface ‘contamination’ which at
its most extreme leads to a layer of foam. This is not discussed further here.

‘Scars’ can be a common feature where turbulence disturbs an almost flat surface.
One of the first references to ‘scarified’ water surfaces can be found in Michels &
Lovely (1953). Scars are cusp- or corner-like indentations of the water surface. A
scar is most often generated at the edge of a rising burst where the surface dips
downwards. Hence a scar can also be defined as a line on the free-surface where fluid
is entrained downward from the surface. More recently ‘scars’ have been discussed
as a manifestation of the interaction of patches of vortical flow with a free surface
(e.g. Lugt & Ohring 1992; Sarpkaya 1996). A second question concerns the typical
width of the scars. This is much smaller than the length scale of the vorticity patch.
Hence, in the following analysis we need to be aware that the length scale of the
eddies impinging on the water surface may be very much larger than significant
small-scale features (indentations, scars, humps, etc.) occurring on the surface itself,
e.g. see figure 2 where all the surface features have length scales much smaller than
that of the billowing eddies of the wake from a rock, except for the crest length of
the waves generated.

Whether we consider passive, wavy or vortical free surface structures, they all
develop features like wave breaking as the strength of turbulence is increased. Breaking
waves are familiar. Mechanisms concerning other common features are less known:
e.g. generation and breakdown of vertical vortices (‘bath tub vortex’), breaking and/or
folding above horizontal vortices near the free surface and splashing of the free surface.

3. Terminology and quantification
The major influence of turbulence on the free surface comes from the motions of

moderately coherent and discrete volumes of fluid that move upward to the surface,
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perhaps through it, sometimes falling back on it, or moving parallel to it and hence
disturbing it. It is convenient to have a name for such coherent volumes: we call
them ‘blobs’. This word conveys the behaviour of the liquid better than the term
‘eddy’ used with single-phase turbulent flow. One way of considering these blobs is to
note that they form the boundary of the turbulence, and thus might be represented
by the major ‘billows’ at the edge of an active turbulent region. To quantify these
blobs we suppose that they have a typical length scale, L, and overall velocity q,
with a representative kinetic energy density per unit mass k = 1

2
q2. The length L

may often correspond to the most energetic turbulent scales, so that k has its usual
definition as the average k = 1

2
〈uiui〉 where ui is the turbulent fluctuation velocity.

Whatever choice is made for L this is a reasonable choice for the velocity scale. If,
as is more appropriate, L is chosen as the length scale of dominant surface features,
it represents the result of an interaction between turbulence and the surface effects
of gravity and surface tension. Although the direction of motion relative to the free
surface strongly affects the surface features, for the present purposes we use a simple
scalar velocity parameter, q, since flow direction can vary substantially from blob to
blob. We suppose that L and q are independent parameters.

There are also other features to be borne in mind, such as smaller scale features,
as seen in figure 2, the downwelling lines of scars around blobs, which have much
shorter transverse length scales, and the more point-like depressions terminating
strong vortices. In addition, when turbulence disrupts a surface typical length scales
fall rapidly as surface-tension-dominated drops and bubbles form. However, we are
concerned with the motions that lead to such breakup. Sometimes these are as small
in scale as typical drops or bubbles, but are often very much larger.

To chart our discussion of the water surface we consider the two stabilizing factors
of gravity and surface tension. We give less attention to the liquid’s viscosity since
turbulence is essentially a high Reynolds number phenomenon. Viscosity probably
plays a role in maintaining the integrity of the surface for small-scale turbulence.
We suggest, from consideration of mixing layers and of inhomogeneous flows such
as buoyant plumes, that we are unlikely to have turbulence for Reynolds numbers
Re = qL/ν < 100. The brief overview below introduces a more detailed discussion in
the following sections (see also Brocchini 1996).

For gravity, g, we compare the corresponding specific energy densities, gL and 1
2
q2.

This leads to a turbulent Froude number Fr = q/(2gL)1/2. For low Froude number
( 1

2
q2 � gL) and if the turbulence has insufficient energy to disturb the surface, the

stabilizing effect of gravity is dominant, leading to a nearly flat surface. This is not
the whole story since there is also the shorter length scale of around q2/2g for which
surface displacements may be stronger. At high Froude numbers, 1

2
q2 � gL, the

average excursions of the free surface may be expected to be O(q2/2g), and extreme
excursions much greater. The surface is then not restrained by gravity. It is for
Fr ∼ O(1) that the most varied behaviour can be expected with an interplay between
gravity and turbulence with the randomness of turbulence and the structure of waves
giving breakers of various sorts.

For surface tension, T , which is a surface energy density, division by density, ρ,
gives a specific surface energy, S = T/ρ, so we need to compare it with some volume
of the liquid and hence we use the representative depth, L, of the turbulent flow
or blob. This gives a comparison between 1

2
q2L and S , leading to a Weber number

We = q2L/2S . As for the Froude number, a low Weber number, We� 1 implies little
or no disturbance to the surface. A high Weber number indicates that the surface
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Figure 4. Diagram of the (L, q)-plane for water. The shaded area represents the region of marginal
breaking and has been obtained by using the two estimated values for both the critical Weber
number [(π− 2)/5 < Wec < π/4] and the critical Froude number [(5/2− π/2)/250 < Frc < π/24]
obtained from equations (3.1) and (3.2). The two straight dotted lines represent a simplified division
of the plane for purposes of discussion. The dashed line represents Re = 100.

could disintegrate into drops, hence reducing the length scale, and We ∼ O(1) leads
to surface features that might involve wave-like behaviour.

However, both gravity and surface tension act at a liquid surface so the surface
behaviour depends on both Fr and We. Thus the value of both parameters must
be considered. We discuss their effect by seeking to delineate a critical region of
parameter space between quiescent surfaces and surfaces that break up completely.
We illustrate this with a length–velocity diagram in figure 4 where the (L, q)-plane,
with logarithmic scales, is shown for water rather than a (Fr,We)-plane. If this critical
dividing region were simply defined by specific critical Froude and Weber numbers,
this plane would be divided by lines

q =
√

2FrcgL and q =
√

2WecS/L

where the subscript c denotes a critical value. Such lines are represented by the
two straight dotted lines in figure 4. These divide the (L, q)-plane into four regions
labelled 0 to 3: each of these regions is discussed below. In addition we find it useful
to consider the development, in space or time, of a turbulent surface flow as being
represented by a trajectory through the parameter space to describe the growth or
decay of turbulence in a specific flow. In this same parameter space we identify the
line Re = 100: below and to the left of this line viscosity has a dominating effect on
the evolution of any turbulence that might be generated.

There is a substantial range of variation between a surface that is no longer smooth
because of a turbulent flow and one that is broken up by a turbulent flow, so despite
our dividing lines, no precise critical values for Fr and We can be determined. We
attempt to show this range in figure 4 by shading the relevant area. The relationship
between turbulent kinetic energy and surface state seems to be unexplored. We have
found no guidance in the literature and describe below how we have estimated upper
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and lower bounds on this transition. It is near these upper and lower bounds for the
transition region where we look for critical values.

For an upper critical value our approach is to compare the turbulent kinetic energy
density per unit volume of a blob that can disturb the surface with the energy of
a surface disturbance per unit surface area. Thus we need to (i) specify a surface
deformation, (ii) make a suitable surface average of the change in surface energy
compared with the undisturbed horizontal surface and then (iii) decide what depth
of liquid below the surface is relevant to the surface dynamics for that deformation.
As we indicate, surface features differ depending on the length scales L involved, and
also on their spatial frequency. In the discussion below we have made a number of
specific choices. Since there are no available experimental data, these are just guesses
based on experience from visual observations of various flows.

The upper bound of the transition zone is where the surface is just broken up. We
represent this by considering a blob that is just able to generate a spherical drop that
just touches the surface when it has lost any overall motion. Each drop of radius
R has potential energy 4

3
πR3gR + 4πR2S where we take liquid density to be unity.

Now for averaging let us suppose there is one such drop in each square of side 4R,
giving an energy per unit area of 1

12
πgR2 + 1

4
πS . Then if we choose the representative

turbulent length L to be 2R or half the length of our surface structure, we compare
the surface energy to 1

2
q2L. This leads to an estimate for the upper bound of the

transition zone of

q2 ≈ π

24
gL+

πS

2L
= 0.13gL+ 1.57

S

L
. (3.1)

A model surface for a lower bound is less obvious. Surface diffusion studies show
that the first indication of turbulence ‘breaking’ the surface can be represented by
the creation of fresh surface by the breaking of a surface skin. This could be at,
or near, molecular level, but perhaps is better described by the type of continuum
surface model Shikhmurzaev (1997, 1998) has introduced. We are primarily looking
at dynamic effects, and have already noted the existence of shorter relevant length
scales when gravity is dominant. The least disturbance that gives a discontinuity of
the surface gradient appears to be converging downwelling motions with the general
character of the cusp solution described by Jeong & Moffatt (1992) for Stokes flow. To
simplify analysis we consider a linear downwelling feature bounded by two, convex-
upward quarter-circles of radius r. Again we do not include any kinetic energy, this
time supposing the motions to be part of the turbulence. Using the fact that the centre
of mass of a semicircle is 4r/3π from its bounding diameter, the potential energy per
unit length of such a depression is

( 5
3
− 1

2
π)gr3 + (π− 2)Sr.

The depressions need not be especially frequent for them to be important for heat
and mass transfer and for vorticity generation, so we suppose that their spacing is
10r, and again take half this value for the turbulence depth: L = 5r. This results in
the lower bound of the transition region being

q2 ≈
(

5

3
− π

2

)
gL

125
+

(π− 2)S

5L
= 7.7× 10−4gL+ 0.22

S

L
. (3.2)

These curves, (3.1) and (3.2), are used to delineate the transition zone in figure 4.
It is interesting to contrast these two curves with other cases where we do have
information about limiting free-surface shape: that is the organized motion of surface
waves on deep water. Solutions of limiting steepness have been found for both
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Type of wave (aK)max Specific surface Source
energy density

2D propagating (gravity) 0.44 0.072gK−2 Cokelet (1977)
3D short crested (gravity) 0.77 0.088gK−2 Roberts (1983)
2D standing (gravity) 0.62 0.077gK−2 Mercer & Roberts (1992)
2D propagating (capillary) 2.29 1.90S Crapper (1957); Hogan (1979)

Table 1. Maximum energy (kinetic plus potential) per unit area for limiting waves. Here g
represents the acceleration due to gravity and K the wavenumber.

standing and travelling waves when just gravity acts, and for pure capillary travelling
waves. The specific energy density per unit area of these waves is given in table 1. The
corresponding depth L, for comparison with the energy per unit volume, is chosen
as L = π/K , i.e. half a wavelength, as in the above example with blobs/drops. If
we equate these with 1

2
q2L we get for the limiting gravity wave with least energy

q2 = 0.014gL. This can be compared with the upper and lower bound gravity terms
of (3.1) and (3.2): 0.13gL and 0.00077gL. As we might expect it fits midway between
them.

A similar calculation for the maximum travelling capillary wave gives q2 = 1.9S/L
which when compared with surface tension terms 0.23S/L and 1.6S/L is a little above
our chosen upper bound. This seems reasonable since these waves are regular and
overhanging whereas turbulence is irregular. We know of no study of extreme standing
capillary waves, and leave this topic noting the lack of experimental observations and
data in this area.

We observe that if instead of q we consider c, the phase velocity c of linearized
gravity–capillary waves on the surface of wavelength 2L = 2π/K then

c2 = g/K + SK = 0.32gL+ 3.1S/L.

If this curve is plotted in the parameter plane it lies above our upper bound, (3.1), for
the transition region, and is higher than the above energy estimates. This is reassuring
since if water velocities in a wave are as high as the wave’s phase velocity then it
tends to be breaking.

4. Weak turbulence
When both the Froude number and the Weber number of the turbulence are small,

that is region 0 of figure 4, there is little or no surface disturbance, a state which
corresponds to the rigid-lid free-slip studies of free-surface turbulence. Numerous
important studies have been made on the interaction between turbulence and such
a free surface. Recent ones include Gibson & Rodi (1989), Rashidi et al. (1992),
Handler et al. (1993), Borue et al. (1995), Walker et al. (1995), Walker, Leighton &
Garzanos (1996) and Shen et al. (1999).

This is perhaps a good point at which to draw attention to the very simple
representation of the turbulence we are using for purposes of discussion. Single
length and velocity scales are inadequate to represent the multitude of length, time
and velocity scales that occur in a turbulent flow. For example, even in a weak
turbulent flow there is likely to be some fraction of the disturbances that has time
and length scales matching those satisfying the linear surface wave dispersion relation.
Indeed, it seems likely that an analysis similar to that of Phillips (1957) for describing
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the generation of waves by pressure fluctuations due to wind may be more relevant to
the generation of waves by turbulence on the liquid side of the free surface. Teixeira
& Belcher (2000) have made some progress in considering such wave generation.

If waves exist on the water surface then weak turbulence with a greater length scale
than the waves has an effect on their propagation. This can be significant in its effect
if the resulting wave refraction leads to wave focusing.

The free-surface behaviour in this quadrant of the (L, q)-diagram may be described
as flat or, near the upper boundary of the region, wavy.

5. Turbulence with surface tension dominant and gravity unimportant
Region 1 of figure 4 has large Froude number and small Weber number, giving

relatively small-scale turbulence: length scales of the order 1 cm and less for water.
Here surface tension is able to maintain the cohesion of the liquid but gravity fails to
keep the surface flat. The result is smooth rounded surfaces. If the turbulence is below
the critical region then there is not much wave generation and we describe the surface
as knobbly. This type of flow is illustrated in figure 5 with three views of a hydraulic
jump at the base of a weir in a laboratory flume. The knobbly nature of the surface is
evident. The typical length scale is around 1 cm. Other concurrent experiments, partly
described in Peregrine & Svendsen (1978) showed that the turbulence was intense,
having a length scale that was very small compared with the overall size of the
breaker. See figure 2. The scale of the turbulence that is most effective at disturbing
the surface can best be seen in figure 5(a) which is an oblique view from above.
Recent studies of turbulence by particle image velocimetry (PIV) visualization (e.g.
Lin & Rockwell 1995; Sheridan, Lin & Rockwell 1997; Pogozelski, Katz & Huang
1997; Dabiri & Gharib 1997; Dong, Katz & Huang 1997) show instantaneous views
of similar but weaker flows, which also show the transition to turbulence. However,
these authors give little information on the surface shape and its irregular motion.

Note that this is also the regime of micro-breakers, which are small breaking waves
similar in scale to the hydraulic jump of figure 5, and smaller. These are ubiquitous
on a water surface whenever winds stronger than the lightest are blowing. The micro-
breakers are likely to be the major avenue for heat and mass transfer between ocean
and atmosphere. Although these micro-breakers are evident to the naked eye, it is
only in recent years that their existence and importance has been noticed (e.g. Banner
& Peregrine 1993; Melville 1996; Banner & Peirson 1998).

The strength of turbulence beneath even very small breakers can be quite striking
as is shown in figure 6 where a bore of height a very few millimetres is travelling
into still water of a similar depth which is laden with small aluminium flakes to aid
visualization.

We have already made an estimate of the upper boundary of this region where
the surface commences to break up as the turbulence becomes stronger. However,
even before breakup there can be strong interaction between the free surface and the
underlying flow: we see from Lin & Rockwell (1995) and Longuet-Higgins (1992)
that the shedding of vorticity from the trough of a capillary wave can be important
and can generate turbulence. Further, the form of the limiting Crapper wave indicates
that the critical Weber number we deduce from it may be particularly appropriate
for the entrainment of bubbles from the free surface. If the surface pinches off a
small cylindrical bubble of air, the capillary forces will rapidly break it up into small
spherical bubbles.

The value of Wec evaluated from the limiting Crapper wave is more than three
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(a)

(b)

(c)

Figure 5. Knobbly flow. Oblique view from above (a), side view (b) and view from below (c) of a
hydraulic jump fed by flow over a weir. The incoming flow has a depth of about 4 cm. The vertical
ruler, visible in the upper two photographs, is marked in centimetres. These photographs are from
experiments at the Technical University of Denmark upon which the discussions of Peregrine &
Svendsen (1978) were based.
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Figure 6. Small bore of a few millimetres height in water of comparable depth with flow
visualization using aluminium flakes. The field of view is approximately 30 cm long.

times larger than that obtained for splashing in § 3 in which we approached the
problem from another direction by estimating the energy needed to form a drop or a
scar. This shows that we can only estimate both Wec and Frc with a large margin of
uncertainty. To this uncertainty, due to the modelling, we have to add that turbulence
is essentially three-dimensional and we know little about the limiting configurations
of three-dimensional capillary waves, despite a recent surge of papers on nonlinear
aspects of Faraday waves, e.g. Miles (1993); Decent & Craik (1995); Jiang et al.
(1996); Kim & West (1997), Goodridge et al. (1997). A range of experimental studies
are needed to test the value of our parametric description by quantifying the various
regimes that can be seen.

6. Very strong turbulence
When turbulence is so strong that neither surface tension nor gravity can maintain

surface cohesion the flow breaks up into drops and bubbles, region 2 of the (L, q)-
plane. This is an essentially two-phase flow region. However, there are many aspects
of such flows that are not within the usual topics studied in two-phase flow, which
tends to be much influenced by the need to study flow in pipes. Although the drops
and bubbles are dominated by surface tension the capillary energy associated with
them is still much less than the overall turbulent energy from which they are formed.
At a free surface there is the growth and decay of the strong turbulence to consider
as well as the structure of the transition between gas and liquid.

When strong turbulence, generated elsewhere, meets a free surface the fluctuating
eddies are no longer restrained by the inertia of surrounding non-turbulent liquid.
Thus the surface ‘erupts’ as any blob of liquid approaching the surface maintains
its speed. Such an eruption may be exemplified by the ‘rooster tail’ seen at the rear
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Figure 7. A ‘rooster tail’ generated by a Seacat. The lower right of the photograph is where the
highly turbulent propulsive jet has just come out from beneath a hull.

of high-speed vessels as the turbulent flow from their driving mechanism meets the
free surface. Sometimes the flow is sufficiently well organized that some of the ‘tail’
is due to a discrete splash, but in general one can expect substantial spray to heights
of q2/2g (see figure 7). This contrasts with the weak turbulence case of an almost
flat surface. For weak turbulence the vertical velocity fluctuations w approach zero
at the free surface; on the other hand for strong turbulence w can be expected to
be larger than u and v since the horizontal fluctuations are more constrained by
the inertia of the surrounding liquid. This complete disparity in the variation of w
gives the clearest indication that different surface regimes need different approaches
in developing turbulent models.

Consideration of the structure of these violent flows leads to examination of the
breakup of blobs of water. This of course partly depends on how the turbulence is
generated; however, as Peregrine (1981) pointed out, a blob of water thrown away
from the bulk deforms under the influence of the inertia of the residual motion within
the water mass, thus any portion of the surface which commenced with an outward
motion is no longer restrained and continues its outward motion. Thus, the water
soon spreads into sheets and filaments which rapidly breakup once their shortest
length scale brings them into the range of capillary forces.

The capillary instability of a liquid jet has been studied since the 19th century and
most of the experimental and analytical work was summarized by Rayleigh (1945). A
good review on drop formation by disintegration of jets (or sheets) is given by Clift et
al. (1978, § 12). Though quantitative analysis of critical parameters for drops splitting
in air is rather common in the literature this is not the case for drop generation by
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primary breakup of a free surface by turbulence. Only a few works (e.g. Dai, Hsiang
& Faeth 1996) report measurements of drops sizes and relate them to turbulence.

For flows which are only just splashing the trajectory of individual drops is often
sufficiently short that it is described well by an inviscid trajectory under gravity.
However, if there is significant gas motion or the violence of the turbulence leads to
smaller drops, or the trajectories are longer because of a large overall scale, drag from
the air becomes important. This is clearly seen in experiments by Rao, Seetharamiah
& Gangadharaiah (1970) and Gangadharaiah, Rao & Seetharamiah (1970) on self-
aerated flow down spillways. In that case the air drag slows the water drops, and the
drops induce an air flow. Such induced flows of air are usually very evident near large
waterfalls.

The spread of gas downward and the formation of bubbles is usually less obvious
to the external observer, though bubbles are in some ways more important than drops
since they have longer lifetimes. The distribution of bubble sizes not only depends
on the strength of the turbulence but on liquid properties that have yet to be fully
determined, see Weissenborn & Pugh (1996). Scott (1976) demonstrates clearly how
just 1% of salt in water makes a substantial difference to bubble size.

Less well known than the evolution of bubble size is the transition between 100%
gas and 100% liquid. On consideration it is self-evident that there is some bounding
surface, when moving from the liquid side, where the liquid ceases to be connected.
Similarly when moving from the gas side there is a surface bounding the connected
gas. There is a strong likelihood that these are different boundaries and that there is a
region where both gas and liquid are both fully connected but interpenetrating. This
is an example of the ‘percolation problem’, which has a long history (see Grimmett
1989).

Further, the spread of drops and bubbles from the mean interface can differ
considerably. The drops are projected to a distance that depends to a large extent on
their initial velocity as they are formed in the two-phase layer. Thereafter, unless there
are some strong flows in the gas, they travel no higher than this initial energy permits
against gravity and drag effects. On the other hand bubbles once formed have little
persistent inertia and a small rise velocity so that they are likely to be drawn down
to at least a depth L, and the smaller bubbles are drawn to much greater depths, e.g.
Thorpe (1992) and Thorpe, Bowyer & Woolf (1992) give reviews of the distribution
of bubbles in the sea.

However, for considering dynamical effects on turbulence, the main emphasis of
our work, the extremes of the bubble or drop distribution are of little relevance. Other
parameters become important, in particular the rise velocity of the typical bubbles,
or clumps of bubbles, compared with the evolution time scales and length scales of
the turbulence. Bubbles that evolve from enveloped air masses, after an initial strong
turbulent mixing have a diameter of approximately 5 mm in fresh water and 1 mm
in salt water, Scott (1976). The overall scale of a breaker or turbulent flow is also
important, for example air escapes from a 10 cm breaker as it passes, and has little
time to influence the turbulence, whereas clouds of entrained air bubbles can be
giving buoyancy to the turbulent eddies behind a 5 m breaker long after the breaker
has passed by.

7. Gravity-dominated turbulence
Region 3 of our (L, q)-diagram has gravity dominating the turbulence, Fr � 1,

with weak surface tension, We� 1. It is by far the commonest state since it applies
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to almost all terrestrial water bodies with flow: streams, rivers, seas and oceans.
The free surface is essentially flat or nearly so. Linearized boundary conditions are
generally satisfactory. However, there is a range of interesting flow properties in this
regime as the turbulent energy is increased towards the splashing case. These are local
effects and their significance in various applications is not well determined. These
phenomena arise since the turbulence has more than adequate energy to disturb the
free surface, but only at length scales which are smaller than the main turbulent
eddies. At the edge of the eddies, where strong shear develops, or the eddy boundary
is moving or there is a strong surface convergence, a shorter length scale, L/10 or
L/100 or even less, becomes important. If k, or 1

2
q2, retains more or less the same

value at this shorter scale then it is readily seen that the corresponding horizontal
line from a point in region 3 of the (L, q)-plane leading to smaller values of L can
often reach the boundary with the splashing region.

The most characteristic features of these smaller regions are waves, vortex dimples
and scars. In every case these can give rise to localized surface breaking, and hence
introduce to the turbulent flow aspects which are not present in the single-phase case.
Both gas entrainment and vorticity generation are greatly enhanced by any surface
breaking. Hence these small-scale regions may be important features of the flow even
when they form a very small fraction of an otherwise flat, smooth and coherent
surface.

The surface flow due to the turbulence may also have a strong effect on short waves
propagating on the surface, often causing breaking.

In addition, there are also circumstances when the surface is particularly ‘sensitive’
to disturbances beneath the surface. This might be the explanation of some remarks
by Chanson (1996), when discussing self-aerated flows in channels of moderate to
gentle slope, which seem to be strange. Generally self-aeration occurs when the
turbulent boundary layer growing from the bed of the channel meets the surface.
However, on gentle slopes the aeration commences well before the boundary layer
reaches the surface. The photograph illustrating this puzzling behaviour (Chanson
1996, figure 11-2) shows significant smooth surface motions before aeration occurs. A
likely cause of these motions is the underlying turbulence. The entraining ‘billows’ at
the surface of the turbulent boundary layer are moving down the channel at a speed
intermediate between the speed of surface water and the stationary bed. The almost
irrotational flow of the stream over these billows may have a Froude number relative
to the billows that is close to unity. For such near-critical free-surface flows small
disturbances can generate a disproportionately large response at the free surface.
Apparently this leads to breaking appreciably before there is any direct contact
between the rotational turbulent flow and the surface.

Where the significant smaller scales are near those of capillary waves the surface
can have many groups of ripples. These often have the nature of capillary bores and
might be useful for interpreting the subsurface flow. Longuet-Higgins (1996) discusses
one particular case, and we note their occurrence in connection with scars below.

All these deformations of the free surface are useful in giving some indication of the
nature of the turbulent flow beneath the surface. However, when the surface features
are ripples or waves care must be taken in interpreting their implications. Waves are
strongly affected by currents and can become prominent because of focusing, either
in space or in space–time. This means that there may be a significant displacement
between the surface current feature that affects waves or ripples and the position of
steepest waves. Strong vortex dimples arise from concentrations of vertically oriented
vorticity. However, they are unlikely to be important for most turbulent flows because
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Figure 8. Scarified flow in a ship’s wake. On the overall scale of the wake the surface shows little
disturbance, but at the edges of major upwellings there is strong disturbance at a much smaller
scale.

they are effectively point-like objects whereas breaking waves and scars are more line-
like on the surface. Although scars seem to be very important they have received little
direct study. We thus digress in the next section to give a partial description of this
flow feature and related flows.

8. Scars, turbulent and laminar
Scars have already been referred to in earlier sections. At their most developed

stage scars occur where flow on at least one side is downward causing a trough in
the surface, e.g. at the edge of upwelling boils, or adjacent to submerged horizontal
vortices. They are often evident in ship’s wakes where strong trailing vortices shed
from the hull, or caused by propeller motion, sometimes cause long scars in a ship’s
wake. See figure 8 where scars can be seen at two different scales. There is both a
main wake structure, upwelling smoothly at the centre giving two large-scale scars
at the one-third positions across the wake, and scars at the boundaries of the larger
eddies. Their common feature is that they correspond to a flow with a downward
separation from the free surface.

Consider two-dimensional flows, for simplicity. An ordinary laminar flow separation
off a smooth surface with a free-slip condition leads to a streamline that leaves
the surface from a stagnation point, and descends at an angle to the surface, e.g.
perpendicular to the surface for irrotational flow. However, there are two other
distinct types of separation that may be found in laminar flow at a free surface. For
symmetrical flow, Jeong & Moffatt (1992) solved for the downward separating flow
and found that as the relative effect of surface tension decreases the stagnation point
is drawn downwards beneath the mean surface level and the curvature at the bottom
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(b)(a)

Figure 9. Examples of inviscid flows with vortex sheets leaving the free surface. In this idealized
limit the flow at the outer edges of the free surface in each diagram is at rest.

of the resulting trough rapidly increases. The result is that for reasonable strength
flows the curvature becomes comparable with the ordinarily neglected length scale
of surface transition from typical liquid to typical gas. In effect a cusp can form
since finer details can only be resolved by a better model of the surface layer that
is being drawn down, see Shikhmurzaev (1998) for example. Such a cusp line is a
laminar version of a scar, and it seems likely that a moderate amount of asymmetry
in the flow can give similar results. Note that the stagnation point flow, in the normal
continuum mechanics model, does not permit fluid particles to leave the surface. A
cusp type of flow does, hence a cusp line is an exceptionally effective place for gas
liquid transfers, and if a cusp is asymmetric it may be equally effective at entraining
vorticity into the liquid, a point that has not been noticed by several recent authors
discussing vortex generation at a free surface (Yeh 1994; Rood 1995). Cusp-like lines
may also be seen in figure 3.

There is a further type of separation that occurs on free surfaces and is entirely
asymmetrical: at its weakest it is known as a Reynolds ridge (Reynolds 1881; see also
McCutchen 1970; McDowell & McCutchen 1971 and Scott 1982). Here the surface
flow is slowed down, perhaps by gradients of surface-active agents, but only a very
thin layer of fluid is at rest. Boundary layer analysis of a weak flow of this sort is
presented in Harper & Dixon (1974). However, to date these analyses have required
an incoming velocity below the minimum phase speed for capillary–gravity surface
waves. At greater speeds ripples form, and for greater speeds of flow the ripples
become shorter and steeper and break. The flow then has the nature of a scar. There
have been few or no experiments to quantify this sequence of events, but it may be
seen on small streams flowing over an irregular bed.

These flows can also be viewed from another limit: inviscid flows with vortex
sheets. A couple of examples are sketched in figure 9. Figure 9(a) corresponds to
the extension of the Reynolds ridge flows. A vortex sheet leaves the free surface
tangentially and separates a stagnant region from a descending flow: thus it is
a typical free streamline. Peregrine (unpublished, 1973) used Hopkinson’s (1898)
conformal-mapping approach to find the solution for a flow like this from a line
source while investigating extensions of his study of a line source beneath a free
surface (Peregrine 1972). Gravity is supposed to be strong enough to restrain any
surface deflections. On the other hand figure 9(b) shows a stronger upwelling flow
‘falling through’ the surface. At its extreme this latter example is exemplified by a
small waterfall or low fountain.

9. Discussion
We have given a descriptive account of some of the features that arise when strong,

or not so strong, turbulence is present at a free surface. Figure 10 shows an (L, q)-
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Figure 10. Diagram of the (L, q)-plane with tentative descriptions of the flow regimes. The transition
region from the upper and lower bounds obtained from equations (3.1) and (3.2) is indicated.

diagram with adjectives placed in appropriate regions to summarize the flow types
we have discussed. It is clear from our above account that the identification of the
appropriate regions is rather tentative. This is due to the absence of experimental
measurements of appropriate quantities. Indeed, we hope that our attempt here to
identify such regions will stimulate work to further characterize these flow types and
their features. There is no doubt that we have left out some important features. Air is
one of them: in figure 10 we do indicate a region where large-scale splashing leads to
the effect of air drag being significant on the resulting drops. On the other hand air
may be more important for the fluid dynamics when mixed in with the liquid. In most
of this paper and the following papers we ignore it in the interests of simplification.

As well as considering each type of flow, it is useful to set particular flows into this
general context. Few real flows correspond to just one spot in the (L, q)-diagram. Flow
down a steep slope might in certain circumstances reach an equilibrium corresponding
to one point in the diagram, but this would usually imply a high Froude number
giving the potential to develop roll waves. Mechanically stirred flows in a vessel closely
fitting the stirring mechanism may be the best way to obtain flow with one value for
(L, q). For most flows the varying character of the turbulence can be characterized
by surface trajectories obtained by following the flow across the (L, q)-diagram. In
flows where water initially on the free surface meets turbulence its trajectory sweeps
across the (L, q)-diagram and back again along the paths marked ABC and PQRS in
figures 12 and 15, discussed below.

Consider a hydraulic jump or quasi-steady spilling breaker, as shown in figure 11.
One possible trajectory is that marked ABCD in both the photograph of figure 11
and the parameter space in figure 12. Water approaching a jump would generally
have weak turbulence of a length scale corresponding to the depth of water, A. As
it meets the foot of the breaker it suddenly is in very strong splashing turbulence, B:
the dashed line in figure 12 is from the large value of L to a much smaller value with
high turbulent velocities. Individual water particles then spread extremely quickly to
the whole turbulent layer, but we shall follow our notional surface blob. On the front
face of the wave or jump, there is a reduction in turbulent energy as the surface is
followed, against a small mean downward velocity, to the crest of the wave. At the
same time, the scale of the turbulent eddies increases, so that the trajectory meets the
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Figure 11. A bore on the beach at Scripps Institute of Oceanography. The letters ABCD are
related to the points so labelled in the parameter space of figure 12.
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Figure 12. Diagram of the (L, q)-plane with trajectories representative of the flow in a hydraulic
jump or spilling breaker. The dotted line corresponds to an upper limit to the turbulent energy for
each of the two jumps trajectories, ABCD and abcd shown.

boundary of the stable region, and eventually the turbulence becomes weak with a
length scale comparable with the new greater depth, D. In sketching the shape of a
trajectory like ABCD several considerations come to mind.

The line AB represents a jump in the state of the water, hence the use of a dashed
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Figure 13. Diagram of the (L, q)-plane with a trajectory representative of the flow in a spillway.
The points F, G and H represent the initial flow and points further down the spillway respectively.

line: but what determines the location of B in the (L, q)-diagram? The value of q
must be roughly equal to the speed of advance of the breaker relative to the water
immediately in front of it. The length scale L at most corresponds to the size of
the blobs falling forward to the foot of the breaker. As discussed in Part 2, § 8, the
irregularities at the foot of a breaker, formed by these falling blobs, are important
features in the modelling of the foot of a breaker. We call them ‘toes’. An average
over these toes to obtain a mean position also gives a mean height. At present no
one seems to have measured such blobs, toes or mean height. Observation (D.H.P.)
indicates that they are not always a simple fraction of the breaker height.

The trajectory BC is less certain. Is the turbulence most intense at its inception? If
not should the trajectory rise a little? Probably not: although the total production of
turbulence may be greater a short distance from the foot at B, it is then being spread
over a greater volume of water. Then even before the crest, unless the breaker is
unsteady and gaining in strength, the turbulence begins to decay as it spreads further
and increases its length scale. The shape of this part of the trajectory can be bounded
by consideration of a limiting case. If there is no dissipation then we need to conserve
turbulent energy per unit width of the flow and hence L2q2 must be constant. Thus
our trajectory must ‘fall through’ the hyperbolas of q proportional to 1/L. This can be
quantified further for the hydraulic jump where we know the total energy dissipation
and hence the hyperbola corresponding to the maximum energy density, which gives
an absolute upper bound, sketched in figure 12 as a dotted line. For hydraulic jumps
on a small scale, such as shown in figure 5, the trajectory shown as abcd is likely.

A somewhat different trajectory is followed in the (L, q)-diagram for flows where
the turbulence comes from below the free surface, such as for a submerged jet or flow
down a spillway. We first discuss the latter since this often occurs with little lateral
variation. Flow over the crest of a spillway usually has a low level of turbulence,
denoted by F in figure 13. As the flow accelerates down the spillway the boundary
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Figure 14. The surface traces of a submerged jet entering the River Avon at Bristol. This view
covers about 10 m from the river bank which is at the lower edge of the photograph.

layer increases in thickness, turbulent eddies meet the surface and soon lead to
splashing, G. The length scale L is shown as decreasing since the flow is accelerating
and hence the depth of water decreases until the surface breaks up. Thereafter, the
dispersed water gives a greater depth, but it seems unlikely that the length scale of
turbulence can increase in a corresponding manner if the surface breaks up violently.
Once splashing occurs length scales of the water can reduce drastically, to H, as the
water breaks up into drops. On the other hand, if the surface is not so violently
disturbed, the very long, and slowly increasing, length scale of roll waves can appear.

A horizontally oriented subsurface jet, such as has been studied by Walker et al.
(1995) and Hong & Walker (2000), and as is shown in figure 14, gives a different
trajectory in the (L, q)-diagram. This is sketched in figure 15 for a trajectory along the
water surface above the centreline of the jet. Initially the surface is little disturbed,
P, and as the turbulent eddies reach the surface it may become more or less strongly
disturbed, Q to R. Eventually the turbulence decays, to S. All the time the length scale
of the turbulence is increasing since there is no further input of turbulent energy.

The subsurface jet flow and some spillway flows illustrate an ambiguity in the
(L, q)-diagram we are using. It concerns the region just below the stability boundary
where we describe both wavy and scarified regimes. In following a trajectory from F
to G and from P to Q as turbulence comes to the surface, the surface is first disturbed
by the irrotational velocity fluctuations outside the turbulent region. This gives a
wavy surface which generally has very small displacements. On the other hand as a
flow trajectory crosses the stability boundary in the other direction, e.g. R to S, and
also B to C in figure 12 the flow usually has few waves but is scarified.

For the case of a turbulent water jet emerging from a pipe into air the only
stabilizing effect is surface tension. Thus we expect that except for the smaller jets
with relatively gentle turbulence the flow just proceeds to disintegrate. We note that



250 M. Brocchini and D. H. Peregrine

101

100

10–1

10–2

10–4 10–3 10–2 100 101

Length scale, L (m)

Tu
rb

ul
en

t v
el

oc
it

y,
 q

 (
m

 s
–1

)

10–1

R

P

S

Q

Figure 15. Diagram of the (L, q)-plane with a trajectory representative of the surface disturbance
due to the flow of a submerged jet. PQRS are points along the surface trace of the centreline of the
jet.

Lasheras & Hopfinger (2000) review liquid jet instability and for jets with annular
gas flows make use of a (We,Re) parameter space.

10. Conclusion
In this paper we have described some of the features that arise when there is strong

turbulence at a free surface. A wide range of behaviour can occur and by considering
the stabilizing influences of gravity and surface tension we give a structure in which
to consider these flows based on the length scale and energy of the turbulence. As
mentioned above this is not an unambiguous way of describing the flows; however, as
a first step it has the merit that it reveals where further study is needed. We hope that
this paper may act to stimulate studies, such as experiments and idealized numerical
and analytical models, relating turbulence to the surface disturbances it causes.

The work presented here is a preliminary to the following papers which are con-
cerned with modelling such flows. In Part 2 we derive averaged boundary conditions
for turbulent flows. As usual, for turbulence, there are averaged terms for which
a closure hypothesis is required. One aim of this introductory paper is to indicate
that the variety of free-surface flows is such that it is likely that effective closures
should differ for differing regimes, and such closures might be parameterized in the
(q, L)-space, if q and L are suitably chosen.
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